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Abstract— Functional connectivity (FC) networks deri-
ved from resting-state magnetic resonance image (rs-fMRI)
are effective biomarkers for identifying mild cognitive
impairment (MCI) patients. However, most FC identification
methods simply extract features from group-averaged brain
templates, and neglect inter-subject functional variations.
Furthermore, the existing methods generally concentrate
on spatial correlation among brain regions, resulting in the
inefficient capture of the fMRI temporal features. To address
these limitations, we propose a novel personalized func-
tional connectivity based dual-branch graph neural network
with spatio-temporal aggregated attention (PFC-DBGNN-
STAA) for MCI identification. Specifically, a personalized
functional connectivity (PFC) template is firstly constructed
to align 213 functional regions across samples and gen-
erate discriminative individualized FC features. Secondly,
a dual-branch graph neural network (DBGNN) is conducted
by aggregating features from the individual- and group-
level templates with the cross-template FC, which is ben-
eficial to improve the feature discrimination by considering
dependency between templates. Finally, a spatio-temporal
aggregated attention (STAA) module is investigated to cap-
ture the spatial and dynamic relationships between func-
tional regions, which solves the limitation of insufficient
temporal information utilization. We evaluate our proposed
method on 442 samples from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database, and achieve the
accuracies of 90.1%, 90.3%, 83.3% for normal control (NC)
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vs. early MCI (EMCI), EMCI vs. late MCI (LMCI), and NC vs.
EMCI vs. LMCI classification tasks, respectively, indicating
that our method boosts MCI identification performance and
outperforms state-of-the-art methods.

Index Terms— Personalized functional connectivity, MCI,
graph neural network, spatio-temporal attention, functional
MRI.

I. INTRODUCTION

M ILD cognitive impairment (MCI), as a prodromal stage
of Alzheimer’s disease (AD), is a syndrome defined as

cognitive decline greater than that expected for an individual’s
age and education level [1]. In every year, more than 10% MCI
patients suffer from irreversible brain atrophy and convert to
AD [2]. In order to decease the high risk of progression, there
is a clinical demand to accurately diagnosis MCI patients [3],
so that early behavioral interventions and pharmacological
treatments can be applied to delay the dementia expression
and preserve brain cognitive functions. However, due to the
mild symptoms and complex disease pathology of MCI,
most existing methods based on pathology or anatomical
brain images could not distinguish MCI from healthy aging
effectively [4], [5].

Recent studies have shown that the functional connectivity
(FC) networks based on resting-state functional magnetic
imaging (rs-fMRI) is reliable and sensitive in identifying MCI
patients [6], [7]. Most of existing methods constructs FC net-
works for feature extraction from a pre-defined group-averaged
anatomical or functional template, such as AAL template [8],
the Power Atlas [9] and the Glasser Atlas [10]. However,
accumulating evidence from cortical stimulation mapping and
neuroimaging studies indicates that individual differences in
FC were heterogeneous across cerebral cortex [11], [12].
FC networks derived from a group-level brain template only
reflect general principles and may miss important network
features that are evident within individuals [13]. Furthermore,
abnormal FC strengths that were used to identify MCI patients
may attribute to the misaligned functional regions if they are
not tightly linked to the macroscopic anatomy [14]. Therefore,
substantial inter-subject functional variations may degrade
the robustness of MCI identification. To improve the model
performance, it is better to identify functional regions in indi-
viduals and capture the idiosyncrasies of subjects. Emerging
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Fig. 1. The schematic diagram of the proposed framework.

individual-specific parcellation approaches provide an effec-
tive way to map functional organization at the individual
level, but these methods cannot be directly used in MCI
identification. First, the individual-level cortical templates only
identifies 17 large-scale functional networks [15], [16], which
may miss important functional features in averaging rs-fMRI
time series. Second, some individual-level functional studies
only concentrate on local brain regions, and cannot construct
a FC network for the whole cerebral cortex [13]. Therefore,
an individual-level cortical template containing fine-grained
functional ROIs is required to facilitate the discovery of
meaningful functional biomarkers for MCI identification.

In addition, in order to avoid potential bias associated
with one single template, several MCI identification studies
attempted to extract multiple feature sets based on different
templates. For example, Liu et al. identified MCI patients
by using feature representations derived from multiple brain
templates determined by the Affinity Propagation clustering
algorithm [17]. Lei et al. adopted multiple brain parcellation
templates with different sets of ROIs to extract local and global
information [18]. Compared with the frameworks based on
single template, multi-template methods can provide distinct
yet complementary information to identify MCI patients and
boost classification accuracy. However, these studies fused the
original or regularized feature sets generated from multiple
templates by linear concatenation, which neglect the underly-
ing functional relationships among templates. Intuitively, mod-
eling the inter-template interaction information could bring
more comprehensive features and thus improve classification
performance.

Apart from the brain templates, some deep neural network
models are drawing increasing attention in fMRI classifica-
tion. These methods including graph convolutional network
(GCN) [19], graph attention (GAT) model [20], and Trans-
former [21], can generate discriminative representations for
brain FC networks, which provide more powerful classification
ability compared to traditional machine learning models. How-
ever, fMRI studies using above methods mainly concentrate
on spatial correlations between different brain regions. Recent
studies reported that abnormal interactions in an MCI patient’s
brain involve not only spatial connectivity but also temporal
dynamics [22], [23]. Therefore, a novel deep learning strategy,
which takes advantage of spatial and temporal features in fMRI
simultaneously, is highly required for MCI identification.

Inspired by the discussions aforementioned, we propose a
novel personalized functional connectivity based dual-branch
graph neural network with spatio-temporal aggregated atten-
tion (PFC-DBGNN-STAA) for MCI classification. Specifi-
cally, considering the fact that the group-averaged templates
neglect the functional variability across subjects, a personal-
ized functional connectivity (PFC) template is constructed by
an iterative strategy, which aligns 213 cortical ROIs based on
the FC patterns estimated in personalized fMRI. Then, a dual-
branch graph neural network (DBGNN) is employed to fuse
rs-fMRI time series and FC features generated from individual-
and group-level templates, which utilizes the dependences
between templates to boost the robustness of fMRI features.
Finally, we characterize the temporal and spatial features by
using a spatio-temporal aggregated attention (STAA) mod-
ule, which employs a multi-head self-attention network to
emphasize the spatial correlations among ROIs, and applies
a dynamic graph attention mechanism to capture the temporal
changes in local regions. The generated spatial and tempo-
ral features are aggregated for different MCI identification
tasks. We perform classification experiments for our proposed
method on the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database, achieving more satisfactory identification
performance against state-of-the-art methods.

The main contributions of this paper are summarized below:
1) A PFC template is developed to align functional ROIs

using personalized rs-fMRI data, which offers a comple-
mentary connectivity-based functional localizer and provides
important individual-specific functional features for MCI
identification.

2) We propose a DBGNN to concurrently learn individual-
specific and group-level functional features, which contains
the correlations between two templates and is beneficial to
improve the identification performance.

3) A STAA module is introduced to emphasize spatial and
temporal relationships of rs-fMRI features, which aggregates
spatial correlations and dynamic changes to provide more
powerful feature representations.

II. METHODS

The proposed MCI classification framework is outlined in
Fig. 1, and summarized as follows: 1) Apply the proposed
individual-specific parcellation approach to obtain a PFC tem-
plate for each sample; 2) employ the DBGNN to fuse the
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Fig. 2. The construction of (a) the group-averaged functional template
and (b) the PFC template.

time series and FC features from the individual- and group-
level templates; 3) construct a STAA module to map high-
level spatial and temporal features, which is finally used for
MCI identification. The details of our method are given in the
following subsections.

A. The Construction of Personalized Functional
Template

In this study, a novel functional parcellation approach for
constructing a PFC template is applied for each subject, and
the process of is given in Fig. 2. Specifically, we first construct
a group-averaged functional template based on 1,000 healthy
subjects, and then individualize the functional template on
each subject according to its own fMRI data.

1) The Construction of the Group-Averaged Functional
Template: As shown in Fig. 2(a), a group-averaged functional
template with 213 fine-grained functional ROIs across the
cerebral cortex is created based on the FC profile of 1,000
healthy subjects (https://www.nitrc.org/projects/gspdata) [24].
Specifically, with the fMRI data of 1,000 samples as input,
the FC networks of cortical vertexes are calculated by Pear-
son’s correlation for each sample. Then, to get a fine-grained
parcellation, we employ a k-means clustering approach on the

group-averaged FC networks to parcellate the cortical vertexes
into 213 functional ROIs [25]. Specifically, the number of the
ROIs in left hemisphere is defined as 108, and the right is 105.

The numbers of the clusters k = 108 and k = 105 are
determined by a stability analysis as follows. First, the 1,000
healthy subjects are randomly and evenly divided into two
groups. Second, for each hemisphere, with the number of the
clusters k ranging from 20 to 150, the averaged cortical FC
networks of each group are inputted into a k-means clustering
for a parcellation. Finally, we measure the similarity of the
parcellation templates between these two group by calculating
the Dice coefficient [26]. We repeat this procedure 100 times
by changing the division of subjects, and determine the k-value
according to the maximum of the mean Dice coefficients.

2) The Construction of the PFC Template: As shown in
Fig. 2(b), an iterative parcellation strategy is conducted based
on the obtained group-averaged template to derive a PFC tem-
plate for each subject. Take the rs-fMRI data of a target subject
i as input, the strategy is able to individualize the location of
each functional ROI in the group-averaged template according
to the personalized FC and produce an PFC template. The
details are introduced as follows.

First, we define a reference signal for each functional ROI.
Specifically, suppose there are J vertices, the parcellation
index from the initial template is RJ

0 =
[
r1

0 , r2
0 , · · · , r J

0
]
, and

r j
0 ∈ [1, 2, · · · , 213] is the initial label of the corresponding

functional ROI for the j-th vertex. Set the rs-fMRI time series
for the J vertices as

[
y1, y2, · · · , yJ

]
, the reference signal

Sm
0 for the m-th ROI can be defined as the mean signal of all

vertices in it:

Sm
0 =

∑
rw

0 =m
( yw × (1 − V arw))/J m

0 (1)

where J m
0 is the number of vertices in the m-th ROI, and

V arw is the inter-subject functional variability for the w-th
vertex introduced in [12]. The weight (1 − V arw) for each
vertex is used to reduce the impact of vertex whose FC profile
is highly variable in different samples.

Second, we reassign the locations of the 213 functional
ROIs. Specifically, the fMRI signal at each vertex is correlated
with the reference signals of 213 functional ROIs, and each
vertex can be reassigned to one of the 213 functional ROIs
according to its maximal correlation to the reference signals.
In this way, the new label r j

1 of the j-th vertex is given as:

r j
1 = argmax

(
corr

(
y j , Sm

0
))

, m ∈ [1, 2, · · · , 213] (2)

where corr (·, ·) represents the Pearson’s correlation between
two time series. In addition, we define a confidence value C j

1
for the j-th vertex as the ratio between the largest and the
second-largest correlation value. Until now, the first iteration
has finished, and we can obtain a temporary template whose
ROIs have been reassigned once.

For the subsequent iteration procedure, the reference signals
of 213 ROIs need to be recalculated as follows. At the k-th
iteration, the functional parcellation is RJ

k =
[
r1

k , r2
k , · · · , r J

k
]
,

and the confidence values for all vertices are C1
k , C2

k , · · · , C J
k .

In the m-th functional ROI, suppose there are J m
k core vertices

whose confidence value greater than a pre-defined threshold
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Cth . New reference signal of this ROI can be defined as a
weighted average between the signals of J m

k core vertices and
the initial reference signal:

Sm
k =

∑
rw

k =m,Cw
k >Cth

yw

J m
k

+ Sm
0 /k (3)

Based on the new reference signals, which incorporate the
information of both the individualized FC and the initial
functional template, all the cortical vertices are further cor-
related with them and reassigned to one of the 213 func-
tional ROIs. With the increasing number of iterations, the
resulting functional ROIs for each subject will converge to
be consistent, and functional parcellations will vary substan-
tially across different subjects. The iteration procedure can
be stopped if the membership for each ROI remained the
same for a predefined ratio ξend of the vertices. In this
way, the PFC template of the target subject i is obtained,
where the distribution of the 213 functional ROIs have been
individualized.

B. Dual-Branch Graph Neural Networks
A PFC template is obtained by the proposed individual-

specific parcellation method, which generates totally 213 func-
tional ROIs across the cerebral cortex. However, it does not
fully consider the anatomical brain parcellation, especially
subcortical regions. To supplement structural information, the
widely used anatomical parcellation, i.e., AAL template [8],
is cooperated with the PFC template to extract FC features for
the whole brain. It defines 45 anatomical volumes of interest
in each hemisphere, i.e., 39 cortical and 6 subcortical regions.

To consider the dependencies between these two templates,
we propose a DBGNN to capture individual- and group-
level information simultaneously. It employs two branches
with synchronized Graph-Conv and a shared weight matrix to
comprehensively map brain FC patterns and fMRI time series
from different templates to brain activities. The illustration of
DBGNN is given in Fig. 3.

Specifically, the PFC and AAL branches are used to char-
acterize rs-fMRI time series and FC networks generated from
the two templates. Inspired by associated works [27], [28],
we employ a group-constrained sparsity method to construct
FC networks for the two templates, because it can provide a
sparse FC network that removes insignificant or spurious con-
nections. Specifically, denote time series of the PFC and AAL
templates for a sample as X P FCϵR213×T and X AALϵR90×T ,
to obtain the corresponding FC networks, the sparse brain FC
modeling of the m-th ROI can be considered to minimize the
loss function defined as follows:

f (am) =

∑N

n=1
(
1
2

∥∥xn
m − Xn

m an
m
∥∥2

2 + λ ∥am∥2,1 (4)

where am = [a1
m, a2

m, · · · , aN
m ] is the FC coefficients for

the m-th ROI, xn
m is the corresponding time series for

the n-th sample, and Xn
m = [xn

1, · · · , xn
m−1, xn

m+1, xn
M ] is

the data matrix which consists of all time series except
for the m-th ROI. ∥·∥2,1 is the summation of l2-norms,
and λ is a regularization hyper-parameter which controls

Fig. 3. The illustration of the DBGNN.

the sparsity of the model. We keep the signs of the con-
structed FC networks for the PFC templates AP FC =

[a1,P FC , a2,P FC , · · · , a213,P FC ]ϵR213×213 and the AAL tem-
plates AAAL = [a1,AAL , a2,AAL , · · · , a90,AAL ]ϵR90×90, and
then input all the FCs to the following steps.

To fully capture the FC information among brain ROIs while
effectively highlighting the local time series, GCN is employed
for each branch due to its superiority in learning high-level
graph features [29]. In a graph, each node has a corresponding
characteristic vector, which is represented as the rs-fMRI time
series for a brain ROI. The connection between the nodes
in the graph denotes the FC between a pair of ROIs. As an
adjacency matrix, the FC network captures the topological
correlations among brain ROIs. At this point, a graph data
for each branch with 213 or 90 nodes, where each node
contains a feature vector with a dimension of T ×1, has been
constructed. The results output by the GCNs in two branches
are Y P FCϵR213×D and Y AALϵR90×D, respectively, where D
represents the length of output meaningful time series for each
node.

Additionally, in order to mutually map individual-specific
and group-level FC features, a FC network AFCϵR213×90

is constructed for each sample by correlating time series
X P FCϵR213×T and X AALϵR90×T . Then we feed it into a
standard convolution with kernel of 1×1, batch normalization,
and a rectified linear unit (ReLU), where the convolutional
layer can learn the functional weight of brain regions without
changing AFC spatial correlation [30]. This strategy not only
simulates the dependencies between different brain templates,
but also enhances the differences between brain regions. As a
result, a non-negative cross-template shared weight matrix
AshareϵR213×90 is achieved. Next, the Ashare is multiplied to
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Fig. 4. The illustration of the STAA module.

the outputs of two GCNs (i.e., Y P FC and Y AAL) for updating
node representations. As a learnable matrix, the Ashare is
updated and optimized according to the classification perfor-
mance. Finally, the generated representations are concatenated
as the high-level feature H DBG N N ϵRD×303, which contains
the dependency information between individual- and group-
level templates, and can be provided to the following layers
to effectively learn spatial and temporal information.

C. Spatio-Temporal Aggregated Attention Module
The rs-fMRI time series contains temporal information

reflecting dynamic brain activities. However, most existing
methods only concentrate on the spatial connectivity among
different brain regions, and ignore the temporal features.
To overcome the limitation, a spatio-temporal aggregated
attention (STAA) module is proposed to characterize spatial
and temporal features simultaneously, and the illustration is
outlined in Fig. 4. The high-level representations H DBG N N
obtained by DBGNN is regarded as the input feature of STAA.
The size of the input is D×303, where D denotes the length
of time series, and 303 denotes the total number of ROIs.

For spatial feature extraction, we adopt a self-attention
mechanism to emphasize the spatial correlations between brain
ROIs. The framework includes a query transform matrix w Q ,
a key transform matrix wK and a value transform matrix wV .
The outputs of these transforms, i.e., the query Q, key K , and
value V , can be defined as:

Q = H ′
DBG N N w Q (5)

K = H ′
DBG N N wK (6)

V = H ′
DBG N N wV (7)

where H ′
DBG N N is the transposition of H DBG N N , and

w Q, wK
∈ RD×303, wV

∈ RD×D . The output of the attention
layer can be calculated as:

H S = [so f tmax
(

Q K
√

213 + 90

)
V + H ′

DBG N N ]
′ (8)

For temporal feature extraction, we update the time series
by using dynamic GCN, where H ′

DBG N N is set as the node
feature. Different from the tradition GCN with a fixed adjacent
matrix shared by all the input samples, the adjacent matrix Ad

in our dynamic GCN is adaptively adjusted by the input as
follows:

Ad = δ(W A H DBG N N ) (9)

where δ is sigmoid activation function, W A ∈ R303×D is
weight of a convolutional layer to formulate the dynamic
adjacent matrix Ad . It improves the representational power of
the generated features for individual samples, and avoids the
overfitting problem induced by a fixed adjacent matrix. In this
way, the output HT of the dynamic GCN can be defined as:

HT = [L Relu(Ad H ′
DBG N N Wd)]

′ (10)

where L Relu is LeakyReLU activation function, Wd ∈ RD×D

is the state-update weight.
With the above features, soft attention is applied to adap-

tively select different spatio-temporal aggregation information,
which is guided by the global average pooling layer Fgp.
Specifically, a softmax operator is applied after feature con-
catenation of two fully connected layers as follows:

[V S, V T ] = spli t (ϕ
(
F1

f cF gp
(H S + H

T
)
)

× ∥F2
f cFgp(H S + HT ))) (11)

where V S, V T denote the soft attention vector by a softmax
operator for H S and HT , respectively. F1

f c and F2
f c denote

the fully connected layers, || is concatenation operation, ϕ

denotes softmax operator, and spli t means to separate the
vectors spliced by the two fully connected layers. Then, the
spatio-temporal feature H ST can be obtained by:

H ST = V S × H S + V T × HT (12)

where V S and V T are soft attention vectors defined in
Eq. (11), H S and HT are high-level spatial and temporal
features defined in Eq. (8) and (10), respectively. Finally,
as shown in Fig. 1, the classification result is achieved after
processing the output of STAA by means of two fully-
connected layers and the softmax function.

III. EXPERIMENTS AND RESULTS

A. Data Acquisition and Preprocessing
The rs-fMRI data used in this study are selected from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu/), which is a large-scale collaborative
study to explore neuroimaging biomarkers for MCI and early
AD. We exclude rs-fMRI scans with excessive head motion
(mean relative motion > 0.15 mm). The remained dataset
includes 154 NC, 168 early MCI (EMCI), and 120 late MCI
(LMCI). Data acquisition was performed using 3 Tesla Philips
scanners with the following parameters: TR = 3,000 ms;
TE = 30 ms; flip angle = 80 degrees; 140 volumes; matrix
size = 64 × 64; 48 slices; voxel thickness = 3.4 mm.

The rs-fMRI data are processed using the same procedures
described in the previous studies [16], [31]. In brief, the
following steps are performed: slice timing correction (SPM12
software), rigid-body correction for head motion with the FSL
package, normalization for global mean signal intensity across
runs, and band-pass temporal filtering (0.01-0.08 Hz).
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TABLE I
CLASSIFICATION PERFORMANCE COMPARISON OF DIFFERENT TEMPLATES AND FEATURE EXTRACTION MODELS

B. Experimental Settings and Evaluation

The proposed MCI classification framework is implemented
on the Pytorch platform through NVIDIA Tesla V-100 GPU.
Our model is trained by the Adam optimizer [32] with a
learning rate of 0.001. The maximum epoch is initiated as
1000, and the batch size of the training set is 16. The model
is optimized by using the cross-entropy loss between the
predicted labels and actual labels of training samples.

In our experiments, we conduct two binary classification
tasks and a three-class classification task to evaluate the
effectiveness and robustness of the proposed method, including
1) NC vs. EMCI, 2) EMCI vs. LMCI, and 3) NC vs. EMCI vs.
LMCI. The generalization performance is obtained via a nested
10-fold cross-validation as our previous study [22], [33], which
is proven to be a robust unbiased performance evaluation
and hyper-parameter optimization method [34]. Specifically,
a nested cross-validation consists of an outer loop and an
inner loop. For each outer loop, we set one-fold of samples as
testing set; the remaining 9-fold of samples are inputted into
the inner loop, and further divided into a training set and a
validation set by using another 10-fold cross-validation. In the
inner loop, the hyper-parameters, e.g., the confidence threshold
Cth([1.5, 1.6, · · · , 3.0]), and the pre-defined ratio ξend ([0.90,
0.92, · · · , 0.98]) to end the iteration strategy of functional
parcellation are optimized by using a grid search strategy
based on the inner 10-fold cross-validation, which uses the
inner training set and validation set for the training and testing
process. In order to obtain reliable evaluation results, the
nested scheme is repeated 10 times by changing the sample
division. Accuracy (ACC), sensitivity (SEN) and area under
curve (AUC) are adopted for the performance evaluation [35],
where SENN, SENE and SENL represent the sensitivities in
identify NC, EMCI and LMCI samples, respectively. In addi-
tion, to demonstrate the superior performance of our proposed
method, we perform one-way analysis of variance (ANOVA)
statistical tests on the 10 times of 10-fold identification results

between each comparing method and the PFC-DBGNN-STAA
framework.

C. Overall Performance
We evaluate the proposed MCI identification method on

the ADNI dataset and compare it with different brain tem-
plates and feature extraction models. The group-constrained
approach is adopted to construct FC networks for all templates,
and the comparison is conducted under the same experimental
conditions. The fusion features based on the PFC and AAL
templates are compared with the following brain templates:
1) only a group-level anatomical template, i.e., AAL tem-
plate; 2) only the PFC template introduced in Section II-A.
The comparing feature extraction models includes: 1) graph
convolutional network (GCN); 2) spatial self-attention (SSAT)
network; 3) temporal graph attention (TGAT) network.

From the classification performance of all comparison
frameworks given in Table I, we can observe three points.
First, with the same feature extraction modules, the dual-
branch framework generally achieves better performance than
single-template methods (only AAL or PFC template). Specif-
ically, the highest ACC achieved by single-template methods
is only 80.8%, 80.2% and 74.2% in the three classification
tasks, which are noticeably lower than the proposed methods.
Second, the proposed STAA shows its powerful ability to
extract discriminative spatial and temporal features from FC
networks and fMRI time series. It can be used with different
templates and gain ACC improvements than the single-domain
attention model (SSAT and TGAT) in the three classifica-
tion tasks, which proves the advantage of incorporating the
spatial and temporal attention modules for obtaining more
comprehensive feature representations. Finally, the proposed
method yields the highest ACCs of 90.1%, 90.3% and 83.3%
for NC vs. EMCI, EMCI vs. LMCI, and NC vs. EMCI vs.
LMCI classification tasks, respectively. Compared with other
frameworks, our method achieves at least 2.8%, 3.1% and
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TABLE II
COMPARISON OF ABLATION RESULTS IN THREE CLASSIFICATION TASKS

Fig. 5. The t-SNE visualization in 2-D embedding space of features
learned by different templates and aggregation modules.

2.8% improvements on accuracy, indicating the promising
classification ability. Meanwhile, it outperforms all compared
frameworks by yielding the highest AUC and SEN (except
SENL in NC vs. EMCI vs. LMCI task), proving that the
method can robustly identify the positive and negative samples
simultaneously.

Additionally, to further validate the superiority of our
extracted features, we use the t-SNE visualization to present
the features generated by the above methods into a 2D
embedding space. From the t-SNE plots in Fig. 5, the feature
visualizations from single template are relatively ambiguous
in contrast to the dual-branch method. Compared with other
aggregation methods, the STAA module generates more sep-
arable features. Therefore, our proposed methods using both
AAL + PFC and STAA can efficiently distinguish fMRI data
from different types of classification tasks.

IV. DISCUSSION

A. Ablation Study
To demonstrate the effectiveness of the components of

the proposed MCI classification framework, we perform an
ablation study on the ADNI dataset. In this section, the AAL
template cooperated with GCN is regarded as the baseline
method to explore the contribution of the three proposed mod-
ules, i.e., PFC template, DBGNN, and STAA. The competing
frameworks in the ablation study includes:

1)AAL + GCN: We employ the AAL template to generate
ROIs and extract fMRI time series, which are input into group-
constrained method to obtain FC networks for each sample.
A GCN module is used to aggregate FC features for the
classification tasks [36].

2)AAL + PFC + GCN: Both the PFC and AAL tem-
plates are used to extract fMRI time series and construct FC
networks. The features from the two templates are directly
concatenated and then inputted into GCN module for MCI
classification.

3)AAL + PFC + DBGNN + GCN: Different from the
method above, the FC networks and fMRI time series from
the two templates are fused by the proposed DBGNN, and
further mapped to the final classification results by the GCN
module.

AAL + PFC + DBGNN + STAA: The method is the
proposed framework. Compared with the above method, the
proposed STAA described in Section II-C is adopted to replace
the GCN model for feature aggregation.

From the comparison shown in Table II, the efficacy of
each element of the proposed framework is demonstrated as
follows:

1) Efficacy of the PFC: As shown in Table II, after
adding the features of the PFC to the baseline method, the
classification performance has increased in terms of three eval-
uation metrics. For example, compared with the AAL + GCN
method, the AAL + PFC + GCN method improves AUCs by
0.04, 0.06 and 0.02 for NC vs. EMCI, EMCI vs. LMCI and NC
vs. EMCI vs. LMCI classification tasks. This is due to the fact
that the AAL template may misses subtle FC features that are
variable across individuals. The PFC template could assess the
functional organization of an individual’s brain according to its
personalized FC, which provides complementary information
to boost MCI classification performance.

2) Efficacy of DBGNN: To demonstrate the effectiveness
of the DBGNN module, we add this module to the above
method. Table II shows that this framework outperforms the
method that concatenates individual- and group-level features
directly. It improves ACCs by 5.9%, 2.1%, 3.4% in the
three classification tasks, respectively. The advantage of the
proposed DBGNN module is that it considers the correlations
between individual- and group-level features, and thus extracts
more enriched and comprehensive dual-branch information,
which can effectively improve the feature discrimination of
the MCI classification framework.

3) Efficacy of STAA module: Compared with the GCN
module, the STAA module not only uses a self-attention
mechanism to explore the spatial correlations, but also applies
dynamic graph attention to capture the temporal relationship
of fMRI time series. The spatial and temporal features are
fused to generate high-level representations containing the
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TABLE III
CLASSIFICATION PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS

Fig. 6. The comparison of (a) ACC and (b) AUC with standard deviation
between different dual-branch methods.

information of the fMRI time series and the relevance of FC
networks, simultaneously. The classification results shown in
Table II verifies the effectiveness of STAA module, which
improves ACC (86.3%/85.1%/80.1% to 90.1%/90.3%/83.3%)
and AUC (0.88/0.88/0.87 to 0.90/0.90/0.88) in the three MCI
classification tasks.

B. Efficacy of Feature Fusion of Individual- and
Group-Level Templates

To prove the importance of the feature fusion of our
individual- and group-level brain templates, we replace the
proposed PFC template with some commonly used group-
averaged templates, including the Brainnetome template
(246 regions) [37], the Power template (264 regions) [9] and
the Glasser template (360 regions) [10]. These three templates
are fused with the AAL template by our DBGNN and used
for MCI identification, respectively. The classification results
and the corresponding standard deviations are compared in
Fig. 6. Compared with these group-level templates, our pro-
posed PFC template could detect functional ROIs according
to personalized fMRI and provide complementary individual-
specific features for classification. Therefore, although less
brain regions are used for feature extraction, our proposed
framework based on PFC template improves ACCs by 7.1%,
4.9% and 6.6% in NC vs. EMCI, EMCI vs. LMCI and
NC vs. EMCI vs. LMCI classification tasks, respectively,
indicating that spatio-temporal features from the PFC template
is beneficial to the classification performance.

C. Performance Comparison With State-of-the-Art
Methods

To demonstrate the superiority of our proposed method,
we compare it with several state-of-the-art rs-fMRI classifi-
cation methods, which include:

Strength and similarity guided group sparse represen-
tation(SSGSR): Both fMRI signal temporal correlation and
inter-subject similarity of FC are used to guide the GSR-based
network modeling. The connection coefficients of FC networks
are inputted into a SVM classifier for classification [38].

Attention-Diffusion-Bilinear Neural Network(ADB-NN):
An ADB-NN framework including a data preprocessing mod-
ule, attention-diffusion-bilinear neural network module and
the decision model is used for brain network analysis and
classification [39].

Spatio-temporal graph convolutional network (ST-GCN):
A ST-GCN is trained on rs-fMRI time series to model the non-
stationary nature of FC, and the importance of graph edges
within ST-GCN is learned for classification [40].

Dynamic effective connectivity with a virtual adversar-
ial training convolutional neural network(VAT-CNN): The
local features of dynamic effective connectivity extracted by
a VAT-CNN is inputted into a weight-guided graph attention
networks for feature aggregation and classification [20].

Sparse representation with latent temporal dependency
(SRiLT): The brain functional networks are constructed by the
SRiLT estimation method. The connection weights between
different ROIs are used as features for MCI classification
tasks [7].

Because the sample sizes of the existing research are quite
different from this article, we reproduce the state-of-the-art
classification methods on our processed dataset. For a fair
comparison, all of the comparison results shown in Table III
are based on a nested 10-fold cross-validation. The experi-
mental environment is the same as our method. Compared
with these existing studies, one advantage of our proposed
method is that the PFC template injects an individual-specific
FC network into feature sets, and another advantage is the
utilization of high-level spatial and temporal representations.
It can be observed that the proposed method achieves more
excellent performance than the state-of-the-art methods. The
classification ACC is 6.9%, 5.9%, and 7.3% higher than the
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Fig. 7. The convergence of the parcellation algorithm with different Cth
is evaluated by (a) averaged Dice with last iteration for each sample and
(b) averaged Dice between different samples.

Fig. 8. The influence of the confidence threshold Cth on (a) ACC and
(b) AUC with standard deviation for the three MCI classification tasks.

best results from other methods for the three classification
tasks, respectively. The significant improvements on AUC
and SEN also demonstrate the effectiveness of our proposed
method for MCI classification.

D. Convergence of the Individual-Specific Functional
Parcellation Approach

To objectively evaluate the convergence of the proposed
functional parcellation approach, the similarity of PFC tem-
plates with different iterations is measured with the Dice
coefficient [15]. Fig. 7(a) shows the average Dice between
the template with k iterations and with k − 1 iterations for
each sample, where the initial template is set as iteration
k = 0 in the evaluation. It is observed that after 3 or
4 iterations, the template is highly consistent with it in the last
iteration (Dice > 0.95). As the iterative procedure progresses,
it converges to a stable functional template which can map
the unique spatial distribution of the functional ROIs at the
individual level. The convergence speed is correlated with
the confidence threshold Cth . Furthermore, we compare the
similarity between PFC templates of different samples. It is
shown in Fig. 7(b) that the inter-subject variability increases
and stabilizes after several iterations. Between any two individ-
uals, the Dice coefficient is about 0.5 to 0.6 for the final PFC
templates. It indicates that the functional architecture varies
across different individuals. The proposed parcellation algo-
rithm is able to obtain individual-specific functional ROIs and
can reflect the network distribution differences. In addition,
we find that the confidence threshold has an influence on the
inter-subject variability of templates. A larger value could lead
to a more unique functional template, but the reliability is
decreased. It is a requirement for a powerful MCI classification
performance to detect the optimal Cth in the parcellation
strategy.

Fig. 9. The top 100 most discriminative FC on AAL template for
(a) NC vs. EMCI, (b) EMCI vs. LMCI.

E. Influence of the Confidence Threshold Cth on
Classification Performance

In the construction of PFC template, the confidence thresh-
old Cth is used to determine core vertexes and further generate
a reference signal for each ROI. To explore the influence
of Cth on the MCI classification performance, we vary Cth
from 1.5 to 3.0 in steps of 0.1 and report the corresponding
classification ACC and AUC of the proposed framework with
their standard deviations in Fig. 8. It is shown that Cth =

0.2 is an optimal parameter and achieves the best classifica-
tion performance for NC vs. EMCI, EMCI vs. LMCI, and
NC vs. EMCI vs. LMCI classification tasks simultaneously.
Meanwhile, we note that a too-large or too-small value of
Cth degrades the generalization performance of the model.
An excessively high value of Cth indicates that few vertexes
are selected as core signals, and they tend to stay within
the original ROI area. The generated functional template thus
includes less individualized FC information and is more simi-
lar to the initial template, which cannot provide enough com-
plementary information for the classification model. On the
contrary, a too-small Cth represents that a wide range of
core vertexes are selected by the individualized FC. The
reference signals completely dominated by the individual-
ized information may reduce the reliability of the generated
functional template due to the possible noise and limited
sample size of personalized fMRI data. It may lead to the
overfitting problem and performance degradation of the MCI
identification framework.

F. Most Discriminative Brain Correlations
Inspired by related works [22], [41], we perform a sig-

nificance test to investigate the most discriminative FCs in
the AAL and PFC templates, which selects the features by
the following steps. First, in each fold of cross-validation,
we perform a Pearson’s correlation test between the FCs
and the labels, and select the features with FDR corrected
p-value < 0.01. Second, since the selected features are dif-
ferent in each fold, and 10 times of 10-fold cross-validation
are performed in our experiment, we rank the FCs according
to the numbers of times they are selected. In this way, the FC
features that always occur in the cross-validations are defined
as the most discriminative brain correlations.

Fig. 9 and Fig. 10 shows the top 100 most frequently
selected features in the AAL and PFC templates across
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Fig. 10. The top 100 most discriminative FC on PFC template for
(a) NC vs. EMCI, (b) EMCI vs. LMCI.

10 times of classifications, where the line thickness represents
the importance of functional connection. The ROIs on the
AAL anatomical template are classified by their structural
locations, i.e., temporal, central, frontal, limbic, occipital,
parietal lobes and subcortical regions. The ROIs on the PFC
template are classified into 7 functional networks defined in
Yeo’s functional atlas [42], i.e. visual network (Vis), motor net-
work (Mot), dorsal attention network (dATN), ventral attention
network (vATN), limbic (LMB), frontoparietal control network
(FPN) and default network (DN).

From the AAL results in Fig. 9(a) and (b), it can be
observed that the discriminative FC features used in the two
classification tasks (NC vs. EMCI, EMCI vs. LMCI) are
relatively similar. The connections from parietal lobe are most
frequently as discriminative features, which is consistent with
previous MCI studies [43]. From the perspective of brain
function, we find that different FC features from the PFC
template are used in the two tasks as shown in Fig. 10.
In the early stage of MCI, the discriminative FC features
are mainly involved in the high-order association networks,
including FPN, DN, dATN and vATN, which is correlated
with the cognitive and memory functions. In the late stage
of MCI, the primary cortex including Vis and Mot networks
also show function degenerations. More motor-cognitive and
visual-cognitive interactions are chosen to discriminate EMCI
and LMCI patients, which can be regarded as the biomarkers
for late stage of MCI. These regions is also reported in the
previous MCI/AD studies [23], [44]. Note that the proposed
PFC template is sensitive to different stages of MCI, and it
demonstrates the atrophy of cortical FC is not consistent in
early and late MCI. This phenomenon is similar with recent
studies that report a more widespread reduction of cortical
thickness over time [45], [46].

G. Limitations and Future Directions
Although the proposed framework achieves promising MCI

classification performance, there are still two limitations in
this work. One limitation is the computational complexity
of our framework. Compared with existing MCI identifica-
tion methods which only using group-averaged templates,
our proposed framework spends time on constructing a PFC
template before inputting fMRI data into a deep learning
model. According to our experiments on Intel CPU with 8GB
RAM, it takes about 20.4s for a 12-min rs-fMRI sample.

However, in practical applications, multiple samples can be
processed simultaneously when a high-RAM CPU is available,
and the computational issue becomes less critical. Another
limitation is that the genetics data is not utilized in this work.
Several studies demonstrated that multimodal data analysis
based on rs-fMRI and gene data facilitates the study of brain
functions [47], [48], which provides a new solution to identify
MCI patients more accurately. Our future work will try to
reveal the correlations between individual-specific FC and
gene of MCI patients by multimodal data fusion.

V. CONCLUSION

In this paper, we propose a novel MCI classification frame-
work called PFC-DBGNN-STAA, which fuses individual- and
group-level functional features and is effective in identifying
both EMCI and LMCI. First, we introduce an individual-
level parcellation method to build a PFC template for each
sample. This method can automatically project 213 functional
ROIs onto each individual’s cerebral cortex according to
its FC patterns, and supplement important individual-specific
functional features. Then, with FC networks detected by a
group-constrained algorithm, the individual- and group-level
functional features are fused by a DBGNN. This feature
extraction approach captures the relationships between two
templates and achieves more promising performance compared
with the linear concatenation of features. Finally, we feed these
fused features into a novel STAA module to generate high-
level spatio-temporal FC representations, which emphasizes
both spatial correlations and temporal dynamics in brain ROIs.
We perform experiments on the ADNI database to evaluate our
proposed method, which verifies the efficacy of the PFC tem-
plate, DBGNN, and STAA. The detailed discussion shows that
the proposed method captures individual-specific functional
features, which can be regarded as the critical MCI-related
discriminative biomarkers. Furthermore, experimental results
show that our method achieves better performance against
existing MCI classification methods, which has a potential
application prospect in clinical MCI diagnosis.
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